<table>
<thead>
<tr>
<th>Problem</th>
<th>GRADER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dr. A. Khathlan</td>
</tr>
<tr>
<td>2</td>
<td>Dr. Salah Dulaijan</td>
</tr>
<tr>
<td>3</td>
<td>Dr. Hamdan AlGhamedy</td>
</tr>
<tr>
<td>4</td>
<td>Dr. Ali Gadhib</td>
</tr>
<tr>
<td>5</td>
<td>Dr. Salah Dulaijan</td>
</tr>
</tbody>
</table>
Problem 1: (20 points)

The given thin plate is made of two parts glued together as shown. The plate is subjected to an axial distributed load \(w \) (N/m). Determine the largest value of \(w \) that can be applied.

For the plate material: ultimate normal stress = 60 MPa

For the glue: ultimate normal stress = 30 MPa, and ultimate shear stress = 15 MPa

For the whole problem, use safety factor \(S.F. = 3 \)

Applied force

\[F = 0.08w \text{ N} \]

\[t = 4 \text{ mm} \]

\[w(\text{N/m}) \]

\[w = \frac{80000}{80} \text{ N/m} \]

\[\sigma_{\text{all}} = \frac{60}{3} = 20 \text{ MPa} \]

\[\sigma_{\text{all}} = \frac{F}{A} = \frac{0.08w}{(80)(4)} \]

\[\omega = 45299 \text{ N/m} \]

\[\text{To find the inclined surface area} \]

\[d = \frac{80}{\sin 70} \]

\[\text{Check glue normal:} \]

\[\sigma_{\text{all}} = \frac{30}{3} = 10 \text{ MPa} = \frac{0.08w \sin 70}{(4)(80/\sin 70)} \]

\[\omega = 45299 \text{ N/m} \]

\[\text{Check glue shear:} \]

\[\tau_{\text{all}} = \frac{15}{3} = 5 \text{ MPa} = \frac{0.08w \cos 70}{(4)(80/\sin 70)} \]

\[\omega = 62229 \text{ N/m} \]

\[\omega_{\text{max}} = 45299 \text{ N/m} \]

Compare 0, 2, 3

Answer.
Problem 2: (20 points)

A bar with the stress-strain diagram shown was originally 1 m long with a square cross-sectional area of 100 mm x 100 mm. When an axial tension load F is applied, the square cross-section became 99.95 mm x 99.95 mm. Determine the following:

a) The magnitude of the applied force F.
b) The final length of the bar when the load F is applied.
c) The final length of the bar when the load F is released.
d) The final length of the bar when the applied load is 300 kN.
e) The final length of the bar when the 300 kN load is released.

Poisson's ratio, \(v = 0.25 \)

Solution

\[E_{\text{lat}} = \frac{99.95 - 100}{100} = -0.0005 \text{ mm/mm} \]

\[E_{\text{long}} = \frac{-(-0.0005)}{0.25} = 0.002 \text{ mm/mm} \]

From \(\sigma - \varepsilon \) diagram when \(E_{\text{long}} = 0.002 \Rightarrow \sigma = 15 \text{ MPa} \)

\[E_{\text{lat}} = \frac{L_p - L_0}{L_0} \Rightarrow L_p = (E_{\text{lat}} x L_0) + L_0 = (1.002 \text{ m} \times 1\) m = 1 m

\[\sigma = \frac{300000}{10000} = 30 \text{ MPa} \] in the plastic range.

\[E_{\text{long}} = 0.008 \text{ mm/mm} \]

\[L_p = (0.008)(1) + 1 = 1.008 \text{ m} \]

\[E = \frac{E_{\text{lat}}}{E_{\text{long}}} = \frac{15}{0.002} = 7500 \text{ MPa} \]

Recover Strain \(= \frac{30}{7500} = 0.004 \text{ mm/mm} \) or directly form graph

\[L_p = (1 \times 0.004) + 1 = 1.008 \text{ m} \]
Problem 3: (20 points)

The rods AB and BC are subjected to the loads and temperature changes shown in the figure and table below. Determine the maximum allowable force \(F \) that can be applied (in the shown direction) if

- the maximum allowable normal stress in AB is 150 MPa (tension or compression), and
- the maximum allowable normal stress in BC is 100 MPa (tension or compression), and
- the maximum allowable displacement of point A is 5 (10)^{-3} m.

<table>
<thead>
<tr>
<th>Properties</th>
<th>L (m)</th>
<th>A (mm^2)</th>
<th>E (GPa)</th>
<th>ΔT (°C)</th>
<th>α (1/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.5</td>
<td>4 (10)^{-3}</td>
<td>200</td>
<td>-40</td>
<td>20 (10)^{-6}</td>
</tr>
<tr>
<td>BC</td>
<td>0.6</td>
<td>3 (10)^{-4}</td>
<td>100</td>
<td>-60</td>
<td>15 (10)^{-6}</td>
</tr>
</tbody>
</table>

1. **FBD for AB:** \(F \rightarrow \Delta F_x = 0 \Rightarrow P_{AB} = -F \)
2. **FBD for BC:** \(-F + 50 (10)^{3} - \sigma_{BC} = 0 \Rightarrow \sigma_{BC} = 50 (10)^{3} - F \)
3. \[\sigma_{allow, AB} = \frac{P_{AB}}{A_{AB}} \leq 150 (10)^{3} \Rightarrow P_{BC} = 50 (10)^{3} - F \]
4. \[\sigma_{allow, BC} = \frac{P_{BC}}{A_{BC}} \leq 100 (10)^{3} \Rightarrow F_{max} = 60 \text{ kN} \]
5. \[\frac{50 (10)^{3} - F}{3 (10)^{4}} = -100 (10)^{3} \Rightarrow F_{max} = 80 \text{ kN} \]
6. Displ. of A: \(\Sigma \Delta = (\sigma_{mech} + \sigma_{therm})_{AB} + (\sigma_{mech} + \sigma_{therm})_{BC} \)
7. \[\sigma_{mech} = \frac{P_{AB}}{A_{AB}} = \frac{F (0.5)}{4 (10)^{-3}} = -6.25 (10)^{-3} F \]
8. \[\sigma_{therm} = A_{BT} \Delta TL = 2 \times (10)^{-9} (40) (0.5) = 4 (10)^{-9} \text{ m} \]
9. \[\sigma_{BC} = \frac{P_{BC}}{A_{BC}} = \frac{50 (10)^{3} - F}{3 (10)^{4}} = 1 (10)^{-3} - 2 (10)^{-8} F \]
10. \[\sigma_{therm} = A_{BT} \Delta TL = 15 (10)^{-9} (-60) (0.6) = -5.4 (10)^{-9} \]
11. \[\text{Displ. of A:} \quad \Delta A = -6.25 (10)^{-3} F + 4 (10)^{-9} + 1 (10)^{-3} - 2 (10)^{-8} F = -5.4 (10)^{-9} \]
12. \[F_{max} = \frac{1.36 (10)^{-3}}{2.625 (10)^{-8}} \Rightarrow F_{max} = 51.81 \text{ kN} \]

The maximum allowable force \(F_{max} \) is 51.81 kN.
Problem 4: (20 points)

Rigid member AC is hinged at A and is supported by an aluminum cable at C. Before applying the load, AC was horizontal and a gap, $\Delta = 0.2$ mm separated it from a steel rod as shown.

If $P = 24$ kN, determine the following:

a) the stress in the aluminum cable.

b) the displacement of point C.

$E_{\text{aluminum}} = 70$ GPa, $E_{\text{steel}} = 200$ GPa, $L_{\text{steel}} = 0.5$ m

$A_{\text{aluminum}} = A_{\text{steel}} = 50$ mm2
Now treat the problem as statically indeterminate.

Equilibrium Eqn:
\[\sum \mathbf{M}_A = 0 \]
\[1.5 \mathbf{F}_{Ac} + \mathbf{F}_{st} (0.5) = 24 \times 10^3 \ (0.5) \]

Compatibility Eqn:
\[\frac{8st + 0.2 \times 10^3}{0.5} = \frac{\mathbf{S}_{AC}}{1.5} \Rightarrow 3 \mathbf{S}_{st} + 0.6 \times 10^{-3} = \mathbf{S}_{AC} \]

\[\frac{\mathbf{F}_{st} (0.5)}{(2\times10^9)(50 \times 10^{-6})} + 0.6 \times 10^{-3} = \frac{\mathbf{F}_{Ac} (0.5)}{(2\times10^9)(50 \times 10^{-6})} \]

\[1.5 \mathbf{F}_{st} + 0.6 \times 10^{-3} = 1.4 \times 10^{-3} \mathbf{F}_{Ac} \]

Solving:

\[\mathbf{F}_{st} = 2747 \ N \]
\[\mathbf{F}_{Ac} = 7084 \ N \]

Stress in Aluminum:
\[\sigma = \frac{\mathbf{F}_{Ac}}{A_{Al}} = \frac{7084}{5 \times 10^{-4}} = 142 \ MPa \]

Displacement at Point C:
\[\delta_C = \frac{\mathbf{F}_{Ac} l_{AC}}{E_{Al} A_{Al}} = \frac{(7084)(0.5)}{(2 \times 10^9)(50 \times 10^{-6})} \]

\[\delta_C = 1.012 \times 10^{-3} \ m \]

\[\delta_C = 1.012 \ mm \]
Problem 5: (20 points)

The steel block shown is subjected to a uniform pressure \(p \) on all the faces. Knowing that the change in length of edge AB is \(-30 \times 10^{-3}\) mm and using \(E = 200 \text{ GPa} \), and \(G = 75 \text{ GPa} \), determine the followings:

a) The magnitude of the applied pressure, \(p \).

b) The strains in the x, y, and z directions.

c) The new length of AB, CB, and BD after the application of the uniform pressure \(p \).

d) The change in volume, using any approach.

Solution

\[E_x = \frac{(\Delta L)_{AB}}{L_{AB}} = -3 \times 10^{-3} \text{ mm/mm} \]

\[E_x = -3 \times 10^{-4} = \frac{1}{200 \times 10^9} \left[-p - 0.333 (-p - p) \right] \]

\[P = 179.64 \text{ MPa} \]

\[E_y = \frac{1}{200 \times 10^9} \left[-179.64 \times 10^{-9} - 0.333 (-2 \times 179.64 \times 10^{-9}) \right] \]

\[E_y = -3 \times 10^{-7} \text{ mm/mm} \]

\[(L_{AB})_{new} = (-30 \times 10^{-3}) + 100 = 99.7 \text{ mm} \]

\[(L_{CB})_{new} = (50 \times -3 \times 10^{-4}) + 50 = 49.985 \text{ mm} \]

\[(L_{BD})_{new} = (75 \times -3 \times 10^{-4}) + 75 = 74.975 \text{ mm} \]

\[\text{change in volume } = \Delta V = (99.7)(49.985)(74.975) - (100)(50)(75) = -337.41 \text{ mm}^3 \]

\[\frac{\Delta V}{337.41} = \frac{\epsilon}{\epsilon_x + \epsilon_y + \epsilon_z} \]

\[\frac{\Delta V}{337.41} = 3 (-3 \times 10^{-4}) \]

\[\Delta V = -337.75 \text{ mm}^3 \]